LOS GASES

INTRODUCCIÓN


En el siguiente informe, daré a conocer mediante conceptos y ejercicios sobre gases. Presentare informacion elemental, explicaciones sencillas y elementales sobre este tema, recordando que la mejor manera de tener un aprendizaje significativo es practicando la teoría, para así mismo llevar a cabo nuestra experiencia en el amplio espacio de la química.




OBJETIVOS




  • OBJETIVO GENERAL
-Conocer y profundizar en conceptos, formulas, leyes de estos.

  • OBJETIVOS ESPECÍFICOS
          -Reconocer cada formula y ley a partir de los recursos de este informe.
          -Manejar y reforzar lo visto en clase.


MARCO TEÓRICO


GAS



Se denomina gas,al estado de agregación de la materia en el cual, bajo ciertas condiciones de temperatura y presión, sus moléculas interaccionan solo débilmente entre sí, sin formar enlaces moleculares,​ adoptando la forma y el volumen del recipiente que las contiene y tendiendo a separarse, esto es, expandirse, todo lo posible por su alta concentración de energía cinética. Los gases son fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura.


Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:
  • Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias​ y de atracción entre las moléculas son despreciables, en comparación con la velocidad a la que se mueven sus moléculas.
  • Los gases ocupan completamente el volumen del recipiente que los contiene.
  • Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
  • Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.
A temperatura y presión ambientales los gases pueden ser elementos como el hidrógeno, el oxígeno, el nitrógeno, el cloro, el flúor y los gases nobles, compuestos como el dióxido de carbono o el propano, o mezclas como el aire.
Los vapores y el plasma comparten propiedades con los gases y pueden formar mezclas homogéneas, por ejemplo vapor de agua y aire, en conjunto son conocidos como cuerpos gaseosos, estado gaseoso​ o fase gaseosa.



PROPIEDADES DE LOS GASES


El estado gaseoso es un estado disperso de la materia, es decir , que las moléculas del gas están separadas unas de otras por distancias mucho mayores del tamaño del diámetro real de las moléculas. Resuelta entonces, que el volumen ocupado por el gas (V) depende de la presión (P) , la temperatura (T) y de la cantidad o numero de moles ( n).
Las propiedades de la materia en estado gaseoso son:

Recipientes de Gas


1. Se adaptan a la forma y el volumen del recipiente que los contiene. Un gas, al cambiar de recipiente, se expande o se comprime, de manera que ocupa todo el volumen y toma la forma de su nuevo recipiente.
2. Se dejan comprimir fácilmente. Al existir espacios intermoleculares, las moléculas se pueden acercar unas a otras reduciendo su volumen, cuando aplicamos una presión.
3. Se difunden fácilmente. Al no existir fuerza de atracción intermolecular entre sus partículas, los gases se esparcen en forma espontánea.
4. Se dilatan, la energía cinética promedio de sus moléculas es directamente proporcional a la temperatura aplicada.

Variables que afectan el comportamiento de los gases

1. PRESIÓN
Es la fuerza ejercida por unidad de área. En los gases esta fuerza actúa en forma uniforme sobre todas las partes del recipiente.
La presión atmosférica es la fuerza ejercida por la atmósfera sobre los cuerpos que están en la superficie terrestre. Se origina del peso del aire que la forma. Mientras más alto se halle un cuerpo menos aire hay por encima de él, por consiguiente la presión sobre él será menor.
2. TEMPERATURA
Es una medida de la intensidad del calor, y el calor a su vez es una forma de energía que podemos medir en unidades de calorías. Cuando un cuerpo caliente se coloca en contacto con uno frío, el calor fluye del cuerpo caliente al cuerpo frío.
La temperatura de un gas es proporcional a la energía cinética media de las moléculas del gas. A mayor energía cinética mayor temperatura y viceversa.
La temperatura de los gases se expresa en grados kelvin.
3. CANTIDAD
La cantidad de un gas se puede medir en unidades de masa, usualmente en gramos. De acuerdo con el sistema de unidades SI, la cantidad también se expresa mediante el número de moles de sustancia, esta puede calcularse dividiendo el peso del gas por su peso molecular.
4. VOLUMEN

Es el espacio ocupado por un cuerpo.

Volumen de un Gas

5. DENSIDAD
Es la relación que se establece entre el peso molecular en gramos de un gas y su volumen molar en litros.

GAS REAL

Los gases reales son los que en condiciones ordinarias de temperatura y presión se comportan como gases ideales; pero si la temperatura es muy baja o la presión muy alta, las propiedades de los gases reales se desvían en forma considerable de las de gases ideales.
Concepto de Gas Ideal y diferencia entre Gas Ideal y Real.
Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.
1. - Un gas esta formado por partículas llamadas moléculas . Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.
2. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento . Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.
3. - El numero total de moléculas es grande . La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio.
4. - El volumen de las moléculas es una fracción despreciablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el gas comprimido hasta dejarlo en forma líquida puede ser miles de veces menor. Por ejemplo, un gas natural puede licuarse y reducir en 600 veces su volumen.
5. - No actúan fuerzas apreciables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.
6. - Los choques son elásticos y de duración despreciable . En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo.

LEYES DE LOS GASES

Los estados de la materia son Solido, Liquido, Gaseoso; que dependen de la presión y de la temperatura a la que se encuentran sometidos. En el estado sólido la fuerza de cohesión de las moléculas hace que estas estén muy próximas unas de otros con escaso margen de movimiento entre ellas. En el estado líquido esta fuerza de cohesión molecular es menor lo cual permite mayor libertad de movimiento entre ellas. En el estado gaseoso la fuerza de cohesión de las moléculas es muy pequeña, prácticamente nula,  lo cual permite que estas se muevan libremente y en todas direcciones. 

Para trabajar con nuestras fórmulas siempre expresaremos la temperatura en grados Kelvin . Cuando la escala usada esté en grados Celsius, debemos hacer la conversión, sabiendo que 0º C equivale a + 273,15 º Kelvin .


Recordemos que volumen es todo el espacio ocupado por algún tipo de materia. En el caso de los gases, estos ocupan todo el volumen disponible del recipiente que los contiene.
Hay muchas unidades para medir el volumen, pero en nuestras fórmulas usaremos el litro (L) y el milílitro (ml). Recordemos que un litro equivale a mil milílitros:
1 L = 1.000 mL
También sabemos que 1 L equivale a 1 decímetro cúbico (1 dm ) o a mil centímetros cúbicos (1.000 cm ) , lo cual hace equivalentes (iguales) 1 mL con  1 cm :
1 L = 1 dm = 1.000 cm = 1.000 mL
1 cm = 1 mL

LEY DE BOYLE

Esta ley nos permite relacionar la presión y el volumen de un gas cuando la temperatura es constante. 

La ley de Boyle (conocida también como de Boyle y Mariotte) establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando latemperatura es constante .
Lo cual significa que:
El volumen de un gas es inversamente proporcional a la presión que se le aplica:
En otras palabras:
Si la presión aumenta, el volumen disminuye.
Si la presión disminuye, el volumen aumenta.
Esto nos conduce a que, si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen siempre tiene el mismo valor .

Tenemos un cierto volumen de gas (V ) que se encuentra a una presión P . Si variamos la presión a P , el volumen de gas variará hasta un nuevo valor V , y se cumplirá:
P1 . V1 = P2 . V2

  • Ejemplo de esta ley
Tenemos 4 L de un gas que están a 600 mmHg de presión. ¿Cuál será su volumen si aumentamos la presión hasta 800 mmHg? La temperatura es constante, no varía.
-Solución: 
Como los datos de presión están ambos en milímetros de mercurio (mmHg) no es necesario hacer la conversión a atmósferas (atm). Si solo uno de ellos estuviera en mmHg y el otro en atm, habría que dejar los dos en atm.
Aclarado esto, sustituimos los valores en la ecuación =  P .

Despejamos V2 que es el dato faltante:

Rta: Si aumentamos la presión hasta 800 mmHg el volumen disminuye hasta llegar a los 3 L.

LEY DE CHARLES

Mediante esta ley relacionamos la temperatura y el volumen de un gas cuando mantenemos la presión constante. 

Textualmente, la ley afirma que:
El volumen de un gas es directamente proporcional a la temperatura del gas.
En otras palabras:
Si aumenta la temperatura aplicada al gas, el volumen del gas aumenta.
Si disminuye la temperatura aplicada al gas, el volumen del gas disminuye.
A mayor temperatura mayor volumen.
Supongamos que tenemos un cierto volumen de gas V que se encuentra a una temperatura T . Si aumentamos la temperatura a T el volumen del gas aumentará hasta V , y se cumplirá que:

  • Ejemplo de esta ley:
Un gas  cuya temperatura llega a 25° C tiene un volumen de 2,5 L. Para experimentar, bajamos la temperatura a 10° C ¿Cuál será su nuevo volumen?
-Solución:
El primer paso es recordar que en todas estas fórmulas referidas a la temperatura hay que usar siempre la escala Kelvin. 
Por lo tanto, lo primero es expresar la temperatura en grados Kelvin:
= (25 + 273) K= 298 K
= (10 + 273 ) K= 283 K
Despejamos V2:

Rta: Si bajamos la temperatura hasta los 10º C (283º K) el nuevo volumen del gas será 2,37 L.

LEY DE GAY-LUSSAC

Esta ley establece la relación entre la presión (P) y la temperatura (T) de un gas cuando el volumen (V) se mantiene constante, y dice textualmente:
La presión del gas es directamente proporcional a su temperatura.
Esto significa que:
Si aumentamos la temperatura, aumentará la presión.
Si disminuimos la temperatura, disminuirá la presión.
A mayor temperatura mayor presión.
Llevemos esto a la práctica y supongamos que tenemos un gas, cuyo volumen (V) no varía, a una presión P y a una temperatura T . Para experimentar, variamos la temperatura hasta un nuevo valor T , entonces la presión cambiará a P , y tendrá que cumplirse la siguiente ecuación:


Debemos recordar, además, que esta ley, al igual que la de Charles, está expresada en función de la temperatura absoluta, y tal como en la Ley de Charles, las temperaturas han de expresarse en grados Kelvin.

  • Ejemplo de esta ley:
Tenemos un cierto volumen de un gas bajo una presión de 970 mmHg cuando su temperatura es de 25° C. ¿A qué temperatura deberá estar para que su presión sea 760 mmHg?

- Solución:

Lo primero que debemos hacer es convertir los 25º C a grados Kelvin:
= (25 + 273) K= 298 K

Despejamos T2:

Rta: La temperatura debe bajar hasta los 233,5º Kelvin. Si convertimos estos grados en grados Celsius hacemos 
233,5 − 273 = −39,5 °C.


LEY GENERAL DE LOS GASES O ECUACIÓN GENERAL DE LOS GASES

Las leyes parciales analizada precedentemente pueden combinarse y obtener una ley o ecuación que relaciones todas las variables al mismo tiempo. Esto significa que, si tenemos una cantidad fija de gas y sobre la misma variamos las condiciones de presión (P), volumen (V) o temperatura (T) el resultado de aplicar esta fórmula con diferentes valores, será una constante.
Veamos un ejemplo, para aclarar:
Supongamos que tenemos una cierta cantidad fija de un gas (n ), que está a una presión (P ), ocupando un volumen (V ) a una temperatura (T ).
Estas variables se relacionan entre sí cumpliendo con la siguiente ecuación:
Donde R es una constante universal conocida ya que se puede determinar en forma experimental.
La misma fómula nos permite calcular el volumen molar de un gas (n) :


A modo de experimento, a la misma cantidad fija de gas (n ) le cambiamos el valor a  alguna de las variables tendremos entonces una nueva presión (P ), un nuevo volumen (V ) y una nueva temperatura (T ).


PROCEDIMIENTO

Se accede a la siguiente pagina: http://www.educaplus.org/gases/index.html


Vamos al menú de esta pagina y observamos las opciones que nos da.



 


En la opción de conceptos tenemos:








En la opción de leyes observamos:




En la opción de Laboratorio encontramos actividades interactivas sobre estas leyes donde nos permite obtener la gráfica de los datos obtenidos:





  • ACTIVIDADES:

Dentro de esta pagina encontramos ejercicios como los siguientes:

  1. LEY DE BOYLE







      2. LEY DE CHARLES





      3. LEY DE LOS GASES IDEALES





  • SOLUCIÓN  DE ACTIVIDADES (LEY BOYLE)



  • SOLUCIÓN DE ACTIVIDADES ( LEY DE CHARLES)




  • SOLUCIÓN DE ACTIVIDADES (LEY DE LOS GASES IDEALES)






WEBGRAFIA


http://www.cespro.com/Materias/MatContenidos/Contquimica/QUIMICA_INORGANICA/gases.htm







1 comentario: